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Abstract 

The quantisation of magnetic flux and the quantisation of electric charge follows from 
requiring the same invariance properties under time reversal of both classical and 
quantum systems. The action integral for a line of quantised magnetic flux is the area 
of the surface traced out in space-time by the motion of the line. It is suggested that the 
relativistic string of the dual resonance model of hadrons is a line of quantised magnetic 
flux. Accordingly, quarks have magnetic charge. Assuming quarks of magnetic charge 
+g, -2g, baryons are composed of three quarks. States of one. two, four or five quarks 
will not normally occur. An explanation is given of the failure to produce free quarks. 

1. Introduction 

The quantisation of magnetic flux in an amount  ½(2nhc/e) and the 
quantisation of electric charge in units o r e  follows from requiring the same 
invariance properties under time reversal of  both classical and quantum 
systems, e is used here for the smallest possible electric charge, not neces- 
sarily the charge on the electron. The action integral for a line of  quantised 
magnetic flux is the area of  the surface traced out in space-time by the 
motion of  the line. 

It  is suggested that the relativistic string of the dual resonance model is 
a line of  quantised magnet ic  flux. Quarks are identified with ends of  
magnetic flux lines, and so have magnetic charge. This identification 
provides an explanation of  the failure to produce free quarks. 

Finally a comparison is made between this work and other ideas con- 
cerning possible magnetic structure of  particles. 

A preliminary note on this work has been given (Tassie, 1973a). 
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2. Quantisation of Magnetic Flux 

Aharonov & Bohm (1959) pointed out that electromagnetic fields have 
'non-local' effects in quantum mechanics that do not occur in classical 
mechanics. If magnetic flux could only exist in quanta of 2~zhc/e, the 
Aharonov-Bohm effect would not occur. Such a possibility was discussed 
by Aharonov & Bohm (1961), who pointed out that such quantisation of 
flux is not compatible with the quantum theory of the electromagnetic field 
as it now stands and that the experiment of Chambers (1960) provided some 
evidence against flux quantisation. However, the experiment of Chambers 
and similar subsequent experiments (reviewed by Erlichson, 1970, and 
Woodilla & Schwarz, 1971) on the observation of the Aharonov-Bohm 
effect do not rule out flux quantisation due to the presence of a leakage 
magnetic field. 

Conclusive evidence against quanta of 2rrhc[e of magnetic flux was 
provided by the measurements by Deaver & Fairbank (1961) and Doll & 
Nabauer (1961) of fluxes N½(2nhc/e), where N is an integer. These fluxes 
will be referred to as half-integral fluxes, and fluxes N(2z~hc/e) will be 
referred to as integral fluxes. The observations of half-integral fluxes were 
performed using superconductors. It has seemed that the existence of 
half-integral magnetic fluxes is intrinsically associated with superconduc- 
tivity. However, the possibility cannotbe discounted that flux quantisation 
in half-integral fluxes is a universal phenomenon, and that superconductors 
present only a simple way of observing flux quantisation. Nambu & 
Jona-Lasinio (1961) have pointed out some similarity between the ground 
state of a superconductor and the vacuum state in quantum field 
theory. 

The conclusion of Aharonov & Bohm (196I) that flux quantisation is 
incompatible with the present quantum theory of the electromagnetic field 
still holds for half-integral fluxes. Therefore, if the quantisation of magnetic 
flux is a universal phenomenon, considerable changes must be made to 
electromagnetic theory. 

The application of a simple postulate to the Aharonov-Bohm effect leads 
to the conclusion that magnetic flux occurs only in amounts N~(2rchc/e) 
and that electric charge is quantised. The postulate, which is frequently 
tacitly assumed, is: 

Symmetry Postulate. Any quantum system has, at least, all the symmetry 
properties of the corresponding classical system. 

This postulate is applied to a system consisting of a single particle of 
charge e moving around an impenetrable cylinder which contains magnetic 
flux. Classically no magnetic force acts on the particle, and the classical 
system is invariant under the time reversal 

t ~ --t 
A .--~- A (2.1)  
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where A is the electromagnetic vector potential. Note that this time reversal 
differs from the symmetry operation of combined time reversal and flux 
reversal 

t -+ - t  
A ~ - n  (2.2) 

under which both the classical system and quantum system under con- 
sideration are invariant. The quantum system is invariant under time 
reversal (2.1) only if the magnetic flux inside the cylinder is N½(2rchc/e) 
where N is an integer. The argument follows that given by Peshkin, Talmi 
& Tassie (1961). 

Under time reversal (2.1) 

r x M v  -+  - r  x M v  (2.3)  

It is convenient to choose a cylindrically symmetric gauge, for instance 

A = F grad ~b (2.4) 

outside the cylinder, where q~ is the aximuthal angle around the z-axis 
which is taken along the axis of the cylinder and F is the magnetic flux 
which threads the cylinder. The z component of the canonical angular 
momentum 

L, = [r × (Mv - eA/c)]. (2.5) 

has eigenvalues mh where m is an integer. But 

[r x Mv]= = L~ + eF/2~z 

and so has eigenvalues h(m + eF/2rdtc). Equation (2.3) requires that if 
h(m + eF/2rchc) is an eigenvalue of [r x My]:, then -h(m + eF/2rthc) is 
also an eigenvalue of [r x My]., and this requires 

eF/2rchc = N/2 (2.6) 

where N is an integer. Thus only for fluxes quantised in units of ~(2rchc/e) 
will the system have the same symmetry properties as both a classical and 
quantum system. Considering particles with other values of the electric 
charge shows that for the quantum system to have all the symmetry 
properties of the corresponding classical system, all charges must be an 
integer multiple of some fundamental charge, e, and all magnetic fluxes 
must be an integer multiple of a fundamental flux ½(2zrhc/e). 

If an arbitrary gauge is used for A, a similar but more complicated 
argument can be given using gauge-independent symmetry theory (Tassie 
& Buchdahl, 1964; Buchdahl & Tassie, 1965) with the same conclusion. 
The argtlment given by Peshkin & Tobocman (1962) shows that a system 
of interacting charges, where the charge of the kth particle is nke, sur- 
rounding an impenetrable cylinder containing flux N:~(2rrhc/e) is invariant 
under time reversal (2.1). 
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The connection between quantised magnetic flux and quantised electric 
charge is similar to the result of Dirac (1931, 1948) except that Dirac has 
quantised charges and quantised magnetic monopoles. To satisfy the 
symmetry postulate, electric charge must be quantised regardless of the 
existence or non-existence of magnetic monopoles. 

3. Theory of Quantised FluxLines 

Accepting the symmetry postulate of the previous section, it is necessary 
to have an electromagnetic theory of quantiged fluxes and charges. Some 
model to provide the flux quantisation can be sought, such as in the analogy 
of the vacuum state to the superconducting state; so that lines of quantised 
flux can be envisaged as sheathed in currents arising from virtual pair 
production in the vacuum. Alternatively, the quantised flux line can be 
regarded as a tube of very small diameter which is a universe in itself 
described by general relativity. Such cylindrical universes containing a 
magnetic field have been considered by Melvin (1964, 1965) and Melvin & 
Wallingford (1966), and a universe containing a flux ½(2rrhc/e) has a radius 

I0 -3z cm if e is taken as the charge of the electron. 
It seems better for the time being to assume that the thickness of a tube 

of magnetic flux is negligible, and so consider a line of quantised flux. As a 
particle traces a world line in space-time, so does a flux line trace out a 
surface in space-time. This surface will be called the word surface of the line. 

In ordinary electrodynamics, the equations of motion for the free electro- 
magnetic field are given by minimi.sing the action integral (Landau & 
Lifshitz,1951) 

S---a f f  F~kdVdt (3.1) 

F~z~ = 2(H 2 - E 2) (3.2) 

For a line of magnetic flux at rest, the action integral is proportional to 
the area of the world surface of the line. Since the action integral is a 
Lorentz scalar, for a uniformly moving flux line, the action integral is also 
proportional to the area of the world surface of the line. By considering the 
world surface of an arbitrarily moving flux line as made Up of infinitesimal 
tangent surfaces, we conclude that the action integral for a flux line is 
proportional to the area traced out by the line in space-time. The equations 
of motion are obtained by the requirement that the area of the world 
surface be stationary. 

The action for a line of quantised flux is 

s = ~ f da  (3.3) 

where dA is the infinitesimal element of area. 
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4. Lagrangian Fomta l i sm  

Equation (3.3) can be written (Eisenhart, t949) 

S = fl f V ' g d u  t du 2 

where ltt~ tl z are coordinates on the two-dimensional surface. 

g = determinant g u 

where the line element on the surface is given by 

dsZ = g u  dul dtd i , j - ~  t ,2  

In four-dimensional space-time, 

d s Z = a ,  a d ) ~ d y  e ~t, f l=  I t o 4  

a~.ay, 
g u  = a ~  Ou ~ atd 

a~a;.. 
- -  aR t OU 3 for a~ a c o n s t a n t  

Choosing 
yn = X , y ,  Z 

y* = ict  

then 

We choose 
u 2 = z = ict  

and write 

for n = I to 3 

u t = l  

I is a measure of  the length along the flux line. 

g t t  = (OX,/Ol)'- n = 1 to 3 

g,~ = g .  = (ax. la/ )  (ax. la , )  

g ~  = (ax. laO ~ + l 

g = g l t  g22 - -  g122 

= (ax./Ot)'-[l + (ax./aO'l - {ox. ox.], 

The Lagrangian and Lagrangian density are defined by 

S= f L dt= f Y' dl dt 

Then 
. ~  = icflg 1/" = cotgU" 

( 4 . 0  

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12~ 

(4.13) 

(4.14) 
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It should be noted that ~e is a line density, cz = ifl is real. The Euler- 
Lagrangian equations 

a ~  a a ~  a a ~  
- - = 0  

yield 

a I ,,=rax.[ax,.k = ax.ax,.a.,:.,]l 

+~[g- ' [-E[' ~,W1! 

(4.15) 

ax" ax" aa~']} = al (4.16) 

5. Hamiltonian Formalism 
The momentum canonically conjugate to x,(l, t) is 

OLa 

=Pg-" ' t~ ,~11 at ~t a,j 
The Hamiltonian line density is given by 

_ a.,¢. 
~ = ~ t , . - ~ - -  ~ 

. , .  1 , 2 [ a x . \  z 
=- 'cpg-"  t - ~ )  

= c{t,. ~ + ='-(ax.laO~} .~ 
Hamilton's equations 

(5.1) 

(5.2) 

yield 

~ {s:.[(axdaty],~'[1 - c-=(axdat )'] -,/'} 

= ~l{d(ax,/at) [1 - c-,(ax,,/at)'-]t/z[(a.,:,,/al)z] -~/z} (5.4) 

However, Hamilton's equations (4.12) are only equivalent to Lagrange's 
equations (4.8) if the coordinate I is orthogonal to z, 

gl2 = gzt = 0 ( 5 . 5 )  

a ~  a ,~  a a,yf 
= " (5.3) ~" at,.' P" =--a-~x. + ai a (~ l  ) 
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6. Isometric Coordinates 

When the coordinates u t, u 2 on the surface are chosen so that 

g12 =g21 = 0  (6.1) 

g n  =g22 = Vg  (6.2) 

the u t, uZ are called isometric coordinates (Eisenhart, 1947, Chapter 3). 
The coordinate curves u t = constant, u 2 = constant divide the surface into 
small squares to a first approximation. Such a net is called an isometric 
orthogonal net. 

Any family of  parallel hyperplanes intersect a stationary surface in 
curves which together with their orthogonal trajectories form an isometric 
net (Eisenhart, 1947, Chapter 4). Consider the family of  parallel hyperplanes 
x = / c t  = constant. Then coordinates/can be found so that/,  z are isometric 
coordinates on a world surface of  a flux line, since the world surface is a 
stationary surface. 

For  a stationary surface the x ~ are solutions of 

0 z x= a 2 xm 
Out2 t- ~ = 0 (6.3) 

where tt I and u 2 are isometric coordinates, i.e. 

02 x .  1 a2 x., 
012 Ca 3t 2 = 0 (6.4) 

The coordinates of a point on the world surface obey the wave equation. 
For  a flux line at rest, I is the distance along the flux line and a disturbance 
propagates along the line with the speed of light. For a moving flux line I is 
not the distance along the line, but 

ds = [I - c-2(Oxm/Ot)2] tl, dl (6.5) 

and a disturbance propagates along the line with a speed less than that of  
light. 

7. Commutation Relations 

We now consider the replacement of  the usual description of electro- 
dynamics by a description in terms of  quantised flux lines and show that 
this leads to the need for the introduction of  commutation relations. 

Electric fields can be considered to arise from the motion of  magnetic 
flux lines. A net electric field but zero magnetic field can be obtained by 
considering two sets of magnetic flux lines in opposite directions perpendicu- 
lar to the electric field with one set of  flux lines moving. This situation is 
analogous to the description of  currents as moving charges. A net current 
with zero charge density is obtained by charges of  one sign moving past 
charges of the other sign. The analogy is a close one, for we have quantised 
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charge and quantised magnetic flux which in motion can give rise to 
arbitrary current and arbitrary electric flux respectively. 

The description of the interaction of  a quantised magnetic flux line with 
a charged particle is complicated, and is entirely through the non-local 
Aharonov-Bohm effect. A 'uniform' magnetic field will be described by a 
uniform distribtition of flux lines. Then it can be shown that the theory of 
motion of quantum mechanical particles through fixed flux lines is in 
contradiction with experiment. For the motion of the charged particle 
around each single flux line is invariant under time reversal, and remains 
invariant under time reversal for many flux lines. Then the motion of a 
charged particle through a 'uniform' magnetic field is invariant under time 
reversal. Experimentally this is not so; an electron moving through a 
uniform magnetic field will not retrace its path if its velocity is reversed. 
Thus the theory does not agi'ee with experiment. However, the theory is 
also inconsistent, as h occurs in the relation between charge and flux, but 
we have a classical description of the motion of the flux line, which corre- 
sponds to taking h = 0 in considering the motion of  the flux line. 

Working in the Schrodinger picture, we postulate the following commu- 
tation relations:, in analogy to the usual canonical commutation relations 
of  quantum field theory 

[? . ( t ) ,p . (r)]  = 0 (7. l) 

[x . ( t ) ,  x . ( t ' ) ]  = 0 

[p,.(1), x.(/')] = ~,5,.. ~(1 - 1') 
l 

(7.2) 

(7.3) 

8. Magnetic Monopotes 

In usual electromagnetic field theory 

div B = 0 

and magnetic monopoles do not occur. The corresponding line theory is 
that of  endless flux lines. 

If  flux lines have ends, the ends are magnetic monopoles. The end of a 
flux line of  unit flux ½(2nhc/e) has a pole strength or magnetic charge 

g = ¼hc/e 

which is one-half of  that of the Dirac magnetic monopole (D:rac, 1931, 
1948; Amaldi & Cabibbo, 1972). This magnetic monopole is very different 
from that of  Dirac. The Dirac monopole is attached to a string which is a 
singularity in the vector potential which is physically unobservable and 
otherwise is a source of flux 

l B. dS = 2rdic/e 



LINES OF QUANTtSED MAGNETIC FLUX AND HADRONS 175 

All the magnetic field of the monopole proposed here is contained in the 
quantised flux line attached to it. A method of detection of these monopoles 
using a superconducting coil has been proposed previously (Tassie, 1965). 
However, if the considerations of Section 9 are correct, free magnetic 
monopoles would not normally occur. 

Experiments have established that magnetic monopoles, of either the 
Dirac type or the type proposed here, are extremely rare (Amaldi & 
Cabibbo, 1972). 

9. Hadrons and Quarks 

Nambu (1970) and Susskind (1970) have obtained amplitudes for the 
interactions of hadrons similar to the Veneziano amplitude (Veneziano, 
1968) using a dual resonance model in which the resonances are identified 
with excitations of a relativistic string of finite length. In the case of mesons, 
a quark is embedded in one end of the string and an antiquark at the other 
end. Goto (1971), Minami (1972), and Goddard et al. (1972) have shown 
that the equations of motion of the relativistic string of the dual resonance 
model can be obtained from an action integral proportional to the area 
swept out by the string in space-time. The action integral is identical with 
that of equation (4.1) for the line of quantised magnetic flux. Goto (1971) 
and Minami (1972) show that the subsidiary conditions imposed by 
Virasoro (1970) in order to eliminate unphysical states in the dual resonance 
model correspond to the conditions of equations (6.1) and (6.2). 

The close mathematical similarity of the relativistic string of the dual 
resonance model with the theory of Sections 3-7 suggests that the relativistic 
string should be identified with a line of quantised magnetic flux. A meson 
is identified with a finite length of string. Because of.the direction of the 
magnetic flux, the two ends of the string are not equivalent and can be 
identified with quark and antiquark (see Fig. la). Thus the quark is also 
a magnetic monopole of the type discussed in Section 8. 

The baryon consists of a bound state of three quarks as shown in Fig. Ic 
if it is assumed that there are two types of quarks with magnetic charge +g, 
-2g.  The quark of magnetic charge -2g  consists of a change or direction 
of magnetic flux in a line. 

q > b) 

9 ~ : <  
q q q 

Figure l.mq and ~ denote quark and antiquark respectively. (a) and (b) mesons, (c) 
baryon. The arrowheads show the direction of magnetic flux in the quantised flux lines. 
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This picture of the structure of hadrons provides an explanation for the 
apparent contradiction between the success of the naive quark model 
which indicates that the quark is only weakly bound within the hadron 
(Dalitz, 1968, 1970; Kokkedee, 1969; Morpurgo, 1970; Flamm, 1970)and 
the failure to produce quarks experimentally (Morpurgo, 1970; Giacomelli, 
1972). As a quark is extracted from a hadron, it trails a string of quantised 
flux. Breaking the string is equivalent to creating a meson, and so the 
lowest energy required to break the string is just the rest energy of the pion. 
So that an attempt to produce free quarks in a high-energy collision just 
leads to the break-up of the string into pieces, corresponding to the pro- 
duction of mesons. Thus, with this picture, it is very difficult, if not 
impossible, to produce a free quark because it would be the end of an 
infinitely long string which is easily broken. Similarly states of two, four, 
five, seven, etc., quarks would have infinite magnetic strings attached, and 
so would not normally be expected to occur. 

The success ofthe parton model (Feynman, 1972; an elementary account 
is given by Tassie, 1973b) suggests that in collisions ofhadrons, quarks recoil 
as if weakly bound, although no free quarks are produced. Such behaviour 
is expected in this picture, as the string attached to the recoiling quark 
breaks. 

Mesons can also be made of a quark of magnetic charge -2g  and its 
antiquark corresponding to the loop structure of Fig. lb. Breaking the 
two flux lines in such a meson yields a baryon-antibaryon pair. It is 
expected that the physically occurring mesons are quantum-mechanical 
superpositions of the structures shown in Fig. 1 a and t b. 

It is assumed here, that for each value of the magnetic charge, g, -2g,  
there is the usual SU(3) triplet of quarks (GelI-Mann, 1964). 

10. Discussion 

The quantised flux lines proposed here have some similarity with those 
proposed by Jehle (1970, 1972). For instance, Jehle points out that the 
moving flux line gives rise to an electric field, and considers the electro- 
magnetic fields arising frora particular configurations of flux lines. How- 
ever, Jehle only considers flux lines forming closed loops. Also his 
motivation for introducing quantised flux lines has no connection with 
invariance under time reversal, and his flux lines contain flux 2nhc/e, twice 
the flux of the flux lines considered here. 

Various suggestions have been put forward (Schwinger, 1969; Han & 
Biedenharn, 1970; Barut, 1971, 1972) that hadrons are built up of magnetic 
monopoles in such a way that the total magnetic charge of a hadron is 
zero, using magnetic monopoles similar to those proposed by Dirac (1931, 
1948). The magnetic monopoles suggested here are very different from 
those of Dirac, as pointed out in Section 8. 

Whether any of these imaginative pictures of hadronic structure in terms 
of magnetic effects have a~y ultimate validity remains to be seen. The 
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scheme suggested here has the advantage o f  fitting in with the dual 
resonance model and the par ton model o f  hadrons.  
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